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The cases when an exact solution for the Navier-Stokes equation can be obtained, are
of particular interest in investigations of the viscous fluid flows.

ew such solutions are known for a viscous, heat-conducting gas, e.g. the solution
obtained in [1] for the case of a viscous gas flow in a conical nozzle when the heat
transfer at the wall is governed by a special law, It is also shown that such self-similar
flows are absent in the case of a channel with plane walls,

in the present paper we show that in this case we can (under certain well defined con-

ditions) reduce the Navier-Stokes equations to a system of ordinary differential equat-
ions whose solution can be obtained either in a closed form (provided that certain vis-
cosity laws are observed) or numerically.

1. Hamel's solution for a flow of a viscous, incompressible fluid between two mutu-
ally inclined plane walls, represents one of the exact solutions of the hydrodynamic
equations,

Assuming that its analog exists for the case of a viscous heat-conducting gas, we shall
seek a solution of the Navier-Stokes equations written in polar r, ¢ -coordinates, in the
following form

v=v(@), w=0 h=h()

where v and @ are the radial and tangential velocity components and: A is enthalpy.
Equations of energy, impulse and continuity and the equations of state are (we con-
sider the case of a perfect gas)
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Here the dimensionless quantities r°,»°, p°, p°, A° and p°-are defined by
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where p is the pressure, p is the density, p is the coefficient of viscosity, x is the
ratio of specific heats, ¢ is Prandtl number, s is Mach number; o, py, k,, p, and
M, denote the values of the respective quantities at the distance r, from the coordi-
nate origin with @ arbitrarity fixed (e.g. ¢ = 0) and R is the Reynolds number

which is constant,
We shall investigate the power dependence of the coefficient of viscosity on temper-

ature p ~ A", although, as we shall see below, self-similar solutions exist for an arbi-
trary relationship p (h).
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It can easily be shown that the system (1. 1) reduces to a system of ordinary differen-
tial equations (from now on we shall omit the superscript ® accompanying the dimen-
sionless quantities),

Equation of continuity yields rpv == ®(p) which, together with the equation of state,
gives

1 1 h
P =0y PP (p.:p,(r)——-T. P:=Pl(9)=@7) (t.2)

Further, inserting (1.2) into the first two equations of (1,1} and integrating the energy
equation once with respect to ¢, we obtain
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The constant of integration € characterizes the magnitude of the heat flux across
the channel walls,

Since the heat flux across each wall is equal to its counterpart in magnitude and oppo-
site in sign, therefore the heat content is constant along the streamlines although the
flow need not be symmerric,

Assumning that the value ¢ = 0 corresponds to the condition dv/de = 0, we can
regard the system of ordinary differential equations in », A and p, as a system with
initial conditions y = {, dv/dp = 0, A = 1, and py = 1 when ¢ = 0. The corresp-
onding angles of inclination of the channel walls to the plane % = 0 in the positive
and negative direction are obtained, after inueg;gting Egs. (1.8) (with given R, M,
and €)  from the condition of zero velocity on both walls,

System (1. 3) with given initial conditions can be solved for the coefficient of visco~
sity depending arbimarily on temperature by any numerical methed on a digital compu~
ter.

2. In the following we shall consider symmetric flows only (without the heat wans-
fer through the walls of the channel) when C = 0.

Integrating the last equation of (1.3) we obtain, independently of the law governing
the viscosity,

h=t +a*'2"’mu——vt) @1

From this it follows that the coefficient of recombination of enthalpy (temperature)
atlt)he wall is equal 0 ¢ ( M denotes the Mach number along the axis of the chan-
nel).

The quandties R/« M*=gq,0(x — 1) M3/ 2= and a - the power index in the
formula for the viscosity coefficients, are used as parameters of the system under con-
sideration.

Putting further Rpy /% M* = Py, we find that (Py),, = a.

When m = 0.5 and 1, the problem has an analytic solution as for n=0. Thus,
i;tegrating the second equation of (1.3) we obtain the following relationship between

s and v
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When B = 0, which corresponds to M =0 and to X == { or 0 =0 with M ar-
bitrary, both expressions yield an identical result

Py() =a—7(1 — )

From (2.2) we see that in the general case the dependence of P, on v need not be
monotonic and P, will have it minimum value when v = 0.

We can also use (2.2) to establish the smallest values which can be assumed by «
for the given B,

Obviously, the condition P3(0) = 0 at the wall will correspond to the minimum
value of & and in this case the channel walls divergence will be at the maximum.,

Thus we have
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which shows that the relations between the minimum value of @, and f are different
for m = 0.5 and 1 (for large B the corresponding relations are proportional to V'

and f).
It remains to integrate the first equation of (1.3) which (taking into account (2. 1)
and (2.2)) can be written as

V=W (@) ()= Q) 2.4)

where the prime denotes the differentiation with respect to ¢ and where the following
notations are introduced:

. v 4 Py ()
WO = rrpi—ee Q0= P[RR

Performing the following variable substitution »" = ¢ (») in (2.4) (see e.g. [3]), we
obtain
' 4+ (v)s= Q(Y) (=188 I (v) = — 2W (v)) (2.5)

where the prime denotes differentiation with respect to ».
Then

=6V [S Q () eV dp 4 c,] (V (0) = S 1 (v) dv) (2.6)

will be the general solution of (2. 5).
Solution of (2.4) can be written as

d
¢=:tS-]-,;’=z+C, 2.7

Integration constants €; and C, should be obtained from the conditiors s = 0 and

4 =0 when » =1,
It remains to compute the integrals giving explicit dependance of the radicand in
(2.7) on » and then to obtain the dependance of ¢ (v). We shall omit the detailed
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procedure and quote the final results. Thus for » = 0.5 we have

@ == arc cos ;:——23 (2.8)

— t/s
(l, (v) = /2 V1+B(1—v’)+ ;:}g arcsinv(i—_‘:_—p) + Aa, Aa=a—a.)

from which it follows that for any g the maximum half-angle of divergence of the
channel walls §,, is obtained and is equal to !/, at Aa =0 (@ = a,) .

We can obtain a number of the limiting expressions derived from (2. 8). For example,
when f =0(M =0 ,or x =1, or o =0), we have

v = (1 4+ Aa) cosg — Aa (2.9)

The case P> 0o corresponds to M—» 00 or 60— 00, Assuming in addition that
Aa = 0, we obtain

@ = arc cos [% (* VI—1v%+ arcsin v)] (2-10)

Similarly, for » = 4 we have

@ = arccos :: g) ({1 (v) = (1 +B)» — 13 Br® 4- Aa) (2.14)

from which it follows that for any value of $ the maximum half-angle of divergence
of the channel walls is obtained for Ae = 0, and that it is again equal to ¥/, 7. The
limiting expression resulting from (2.11) for p =0 and Aa is assumed finite, coin-
cides with (2.9), becoming however

¢ = arc cos (3/y v — 13 13) (2.12)

when B—>o00 and Aa =0.

When n =1 , the formula (2.12) assumes a distinct feature, namely (see e. g. [3])
the quantity (dv/dg),_o is not equal to zero, but to —1/ V3. This is explained by
the fact that two limit values n =1 and B— oo affect each other,

Next we shall investigate the behavior of the solutions (2.8) and (2.11) obtained for
the case when the angle of divergence of the channel walls is small (§, <€ 1). Taking
into account the smallness of §,, we have from (2, 11)

?% a—a,
=9 =a=w (2-13)

which shows clearly that the present case can occur when & B>>a,. This means that
sufficiently high values of R are necessary for the self-similar flows with moderate
or large values of M to exist in such channels.

Rearranging (2.13) and neglecting the quantity *s as compared with &, we obtain

Ryl = 2 (1 + 3 B) % M? (2.14)
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Using (2.8) and (2.11) we can obtain the relationship between the velocity and
N=9 / P

e —
( Ni@) =, VIFBA—o) + ET-;—EE arcsinp (T-%?)%)
Jsiv) (2.15)

(=1 W=1-F0 (aE)=(+B)v—aps"

Thus we see from (2, 14) and (2, 15) that when the thermal and physical properties
(%, 9, n) of the gas flow are given and the values of the parameter @ = R /% M*are
large, then all gasdynamic quantities have identical profiles with respect to the redu=
ced coordinate 1 = @/, in the channels possessing varying angles of divergence,
provided that the quantity Rg,% = f (%, &, n, M) is kept constant,

For M =0 (B = 0) , we obtain from (2. 14) and (2.15) a parabolic velocity profile
and @, =0 (R can be arbitrary), i.e. the Poiseuille flow in a channel of constant
Cross section,

For n=1 and B—» oo, formulas (2.15) and (2.12) yield (dv/dn) o — VZ/3.

For small values of ¢w(a> a,), taking into account (2.2), we find that the redu~
ced wamsverse pressure p/p, (p, denotes the pressure at the axis) is

Lo1t0(y) (2.46)

i.e. the pressure across the channel can be assumed constant to within the terms of the

order of (1 /a).

Considering flows in the channels with small angles of divergence we find, in parti-
cular, that the approximate boundary layer equations {3} used to describe the viscous
gas flows in such channels, represent the limiting forms of the Navier-Stokes equations
obtained when @,— 0.

Moreover, expressions obtained in [*] for computing the wansverse velocity profiles,
coincide with (2.15) given here,

Figs. 1 to 5 show some results of computation. Thus, Fig. 1 and 2 give the velo-
city and pressure profiles in the transverse section of the channel for @ =a* and Fig,. 3
and 4 foro = 100 at P =0, 1, 10 , relative to the quantity @ /@, ,
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Influence of the power index .n in the viscosity law on the reduced characteristic

curves is shown clearly, In addition, computed curves corresponding to n = 0.76 (3ir)
which were obtained by numerical integration, are given for @ = 100 and B = 10 .

x f Fig. 5 shows the relation between the half-
4 —1  angle of divergence of the channel walls ¢y
——gld and a for fixed B.
——pef We note that the solution of the problem
of the flow of a viscous, heat conducting gas
‘ ”T in a channel can be generalized to the case
1o of the rarefied gas flow with slip,

Since in the given case we vary only the
boundary conditions at the wall, the structu-
re of the solution will remain unchanged, but

| ’ the angle of divergence of the channel walls
& - will be different for the given values of «
.. and §.
‘\Q\\- Moreover, a ~1/Kn M where Kn —
N = U/ r, is the Knudsen number and I is
o the mean free path of a molecule, defined
o1 v 0* v in terms of thepaxial flow parameters at the
Fig. § distance n.
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